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This paper extends the transfer matrix technique (TMT) to the transient response
analysis of a large complex non-linear rotor-bearing system by a transfer matrix-Newmark
formulation itegration method. Firstly, the transfer matrix is obtained via the Newmark
formulation. Secondly, the deflections and velocities at the stations, containing non-linear
element, are determined by iteration. Finally, the deflections, velocities and accelerations of
all stations are computed by TMT and the Newmark formulation consistent with the
boundary conditions. In order to eliminate the numerical instability of TMT, the transfer
vector ff T ..

.
.eeTgT is used, instead of the traditional one ff T ..

.
eTgT: Owing to the advantages

of TMT and the Newmark formulation, this method can be applied to calculate the
transient response of a large-scale rotor-bearing system with strong non-linear elements,
and to analyze its stability. Two illustration examples are given, and the results agree well
with those by Runge–Kutta method, and by modal synthetic method.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

During studying the dynamic character of a rotor-bearing system, the transfer matrix
technique is often used to calculate the critical speeds, modes, steady state unbalance
response, and analyze its stability because of that the effects of various factors can be
considered; the minimum number of variables and equations are required; and the method
is easy to apply yet with satisfactory accuracy [1–6]. For example, in 1982, Chu and Pilkey
first used the Riccatitransfer matrix technique in the transient response analysis of linear
rotor-bearing systems [1]. In 1983, a transfer matrix-direct integration method was used to
calculate the critical speeds, modes, steady state unbalance response of a linear rotor-
bearing system by Gu Jialiu [2]. In 1986, an improved transfer matrix-direct integration
method was used to obtain the steady state unbalance response of a weak non-linear rotor-
bearing system, and to analyze its stability by Gu [3]. An equivalent linearization-Prohl
transfer matrix iteration method was proposed by Gu and Chen to compute the steady
state unbalance response of complex non-linear rotor-bearing system [4]. However, the
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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transient responses and their stability analysis of a non-linear rotor-bearing system are
usually studied by the modal synthetic method [5] and the finite element method [6].

This paper extends TMT to the transient response analysis of non-linear rotor-bearing
systems by a transfer matrix-Newmark formulation integration method. With the
advantages of transfer matrix method and improved numerical stability, this method is
applicable to either weak or strong non-linear rotor-bearing systems.

2. ESTABLISHING TRANSFER RELATIONSHIP OF DIFFERENT ELEMENTS WITH THE
AID OF THE NEWMARK FORMULATION

When a non-linear rotor-bearing system takes part in transient-state motion, its
response cannot be expressed as: feg ¼ fAgelt: In order to calculate the transient response
by TMT, we adopt the Newmark formulation to derive the transfer matrix. The Newmark
formulation can be expressed as follows [1]:

xnþ1 ¼ xn þ Dt ’xxn þ ð0�5 � bÞDt2 .xxn þ bDt2 .xxnþ1; ð1Þ

’xxnþ1 ¼ ’xxn þ ð1 � gÞDt .xxn þ gDt .xxnþ1:

equation (1) can be rewritten in the form

.xxnþ1 ¼
1

bDt2
xnþ1 � Pn;

’xxnþ1 ¼
g

bDt
xnþ1 þ Qn ð2Þ

or

xnþ1 ¼ bDt2 .xxnþ1 þ Rn;

’xxnþ1 ¼ gDt .xxnþ1 þ ln; ð3Þ
where

Pn ¼ 1

bDt2
xn þ

1

bDt
’xxn þ

1

2b
� 1

� �
.xxn;

Qn ¼ � g
bDt

xn þ 1 � g
b

� �
’xxn þ Dt 1 � g

2b

� �
.xxn; ð4Þ

Rn ¼ xn þ Dt ’xxn þ ð0�5 � bÞDt2 .xxn;

ln ¼ ’xxn þ ð1 � gÞDt .xxn: ð5Þ

2.1. TRANSFER MATRIX FOR A DISK

According to D’Alembert principles, we can obtain the governing differential equations
for a disk as [7]

Mr � Ml � Jd
.yy� Jpo’dd ¼ 0;

Ur � Ul þ M .yy þ CD ’yy � memo2 cosot � mg ¼ 0; ð6Þ

Nr � Nl � Jd
.ddþ Jpo’yy ¼ 0;

Vr � V l þ m.zz þ CD ’zz � memo2 sinot ¼ 0:
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In order to improve the numerical stability of TMT, equation (3), instead of equation (2),
is substituted into equation (6) at time ðn þ 1ÞDt: We have

M

U

N

V

. . .

.yy

.yy

.dd

.zz

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

r

nþ1

¼

1 0 0 0 Jd 0 JpogDt 0

0 1 0 0 0 �ðm þ CDgDtÞ 0 0

0 0 1 0 JpogDt 0 Jd 0

0 0 0 1 0 0 0 �ðm þ CDgDtÞ

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
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3
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.zz

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

l

nþ1

þ

JpolnðdÞ
�CDlnðyÞ þ memo2 cosoðn þ 1ÞDt þ mg

�JpolnðyÞ
�CDlnðzÞ þ memo2 sinoðn þ 1ÞDt

0

0

0

0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

; ð7Þ

where M;N;y and d are bending moments and angular displacements in xoy and xoz

planes; U ;V ;y and z are shearing forces and deflections in y and z directions; CD is the
friction coefficient; em is the eccentricity; and o is the rotating speed.

2.2. TRANSFER MATRIX FOR A SPRING PARTICLE

According to Newton’s law, we can obtain the governing differential equations of
motion for a spring particle as

Ur ¼ Ul � m .yy � ky þ mg;

Vr ¼ V l � m.zz � kz: ð8Þ

Substituting equation (3) into equation (8) at time ðn þ 1ÞDt; we obtain
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>>>>>>:
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>>>>>>;

r

nþ1

¼
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8>>>>>><
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>>>>>>;

l

nþ1

þ

0

mg � kRnðyÞ
. . . . . . . . . . . .

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð9Þ

where k is a spring constant. The transfer matrix in the z direction is similar to equation (9).
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2.3. TRANSFER MATRIX FOR A SQUEEZE-FILM DAMPER BEARING

The oil film forces of a squeeze-film damper bearing (Figure 1) are complex non-linear
functions of both the deflections and speeds of the bearing centre [8], that is Fy ¼
Fyðy; z; ’yy; ’zzÞ;Fz ¼ Fzðy; z; ’yy; ’zzÞ: From the dynamic equilibrium conditions of the bearing,
we can derive that

Ur ¼ Ul � m .yy þ Fyðy; z; ’yy; ’zzÞ þ mg;

Vr ¼ V l � m.zz þ Fzðy; z; ’yy; ’zzÞ: ð10Þ

As the governing differential equations of motion contain the non-linear terms of the
deflections and the speeds, the transfer matrix for the bearing deflections cannot be
obtained directly, even though the Newmark formulation is used. Therefore, in this station
we choose accelerations as transfer variables instead of the deflections. The deflections and
speeds are regarded as unknown quantities to be determined. Thus, we can derive that
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>>>>>>:
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0

Fyðnþ1Þðy; z; ẏ; żÞ þ mg

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð11Þ

The transfer matrix in the z direction is similar to equation (11). Of course, the transfer
relationship (11) can be used, only if the non-linear terms on state variables are known.

The point transfer matrix for low- and high-pressure shafts at intershaft squeeze-film
damper bearing can be expressed in the same way as equation (11), except the force vector
of the high-pressure shaft being f0;mhig � Fyðnþ1Þðy; z; ’yy; ’zzÞ; 0;Fzðnþ1Þðy; z; ’yy; ’zzÞ; 0; 0; 0; 0gT:

2.4. TRANSFER MATRIX FOR A SHAFT SEGMENT

According to reference [7], we can obtain the transfer relationship for a masssless shaft
segment
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where a0 ¼ 1=ðEJÞ; L is the length of a shaft segment, E is the modulas of elasticity, J is
the moment of inertia of a shaft section. Substituting equation (3) into equation (12), we
can derive that
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where a ¼ a0=bDt2: The transfer matrix of a shaft in the z direction can be written in the
same way.

3. COMPUTING THE TRANSIENT RESPONSE OF NON-LINEAR ROTOR-BEARING
SYSTEMS WITH TMT

For linear rotor-bearing systems, all transfer matrixes do not contain the non-linear
terms, such as Fyðnþ1Þðy; z; ’yy; ’zzÞ and Fzðnþ1Þðy; z; ’yy; ’zzÞ: By using TMT, the next instant
accelerations of every station are computed from the above transfer matrix and the formal
instant conditions. Then, the deflections and speeds of every station are obtained through
equation (3). Repeating this procedure, any arbitrary instant acceleration, deflection and
speed can be obtained.

For non-linear rotor-bearing systems, however, some transfer matrixes, such as
equation (11), contain the non-linear terms of state variables. Only if these non-linear
terms are determined, the transfer relationship of the non-linear station might be practical.
Before computing the next instant accelerations, the state variables at this instant must be
determined. We suggest that the deflection and the speed of the non-linear station be at
first predicted by Taylor series. Thus, the non-linear term can be determined. Then, the
accelerations of every station are calculated by TMT, and the deflections and the speeds
are obtained once again by the Newmark formulation. This iterative procedure is repeated
until the deviations of deflections and speeds obtained in successive iterations satisfy the
given accuracy. Hence, the transient response of a non-linear rotor-bearing system, where
non-linear terms are the complex function of dependent state deflection and speed, can be
computed as follows:

(1) By Taylor series, the next instantaneous deflections and speeds of non-linear stations
are at first predicted from the former instant deflections, speeds and accelerations:

fegnþ1 ¼ fegn þ Dtf’eegn þ oðDt2Þ;
f’eegnþ1 ¼ f’eeng þ Dtf.eeng þ oðDt2Þ: ð14Þ

Then, the non-linear terms of dependent state deflections and speeds at the instant can be
determined. For example, the squeeze-film force can be obtained from reference [8]. Now,
the transfer relationship (11) can be used.

(2) By TMT, the accelerations of the non-linear stations can be solved from the
boundary conditions. Then, the deflections and speeds of the stations are calculated from
equation (3).

(3) Compare the deflections and speeds obtained in (2) with those obtained in (1). If
their deviations do not satisfy the given accuracy, we modify the state values in (1), and
repeat the above computation. Thus, a simply iterative procedure is established from (1) to
(3). The iterative procedure is repeated until the deviations all satisfy the given accuracy.

(4) By TMT, the instant accelerations of other stations can be calculated. Then, the
deflections and speeds of the stations can be determined by equation (3). Thus the instant
deflections, speeds and accelerations of all stations can be obtained. The next instant
deflections, speeds and accelerations of all stations can be computed in the same way
(1)–(4).

Through the above numerical integration, the transient-state and steady state responses
of the non-linear system can be obtained. Furthermore, the modes, critical speed and
stability of the system can be determined.
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4. ANALYZING NUMERICAL STABILITY OF THIS METHOD

With the above method and equation (2), we can obtain the transfer matrix of a spring
particle and a disk for the transfer vector ff T ..

.
eTgT:

1 0 0 0

0 1 0 �ðm=ðbDt2Þ þ kÞ

0 0 1 0

0 0 0 1

2
6666664

3
7777775
: ð15Þ

Because the numerical values of E and k are very large and the value of Dt is very small,
the quantity levels of the lower left elements in equation (12) is much lower than oð1Þ and
the quantity levels of the upper right elements in equations (15) and (16) are much higher
than oð1Þ; whereas the levels of the
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� �
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ð16Þ

other elements of the transfer matrix for transfer vector ff T ..
.
eTgT are of the same level,

oð1Þ: The levels of all elements of the transfer matrix for transfer vector ff T ..
.
.eeTgT are the

same. Obviously, using the transfer vector ff T ..
.
.eeTgT can improve the numerical

characteristic of the transfer matrix.
In addition, by using the transfer vector ff T ..

.
.eeTgT; the acceleration approximation

f.eeg0ðf.eeg0 ¼ f.eeg þ oðeÞÞ is calculated by TMT. Then, the deflection approximation feg0 and
speed approximation f’eeg0 are obtained by equation (3). Thus

f’eeg0 ¼ f’eeg þ oðeÞDt;

feg0 ¼ feg þ oðeÞDt2: ð17Þ

From equation (17), the errors of the deflection and the speed are greatly decreased.
Then, according to the obtained instant state response, the next instant acceleration,
deflection and speed are computed.

However, by using the transfer vector ff T ..
.
eTg; the deflection approximation

feg0ðfeg0 ¼ feg þ oðeÞÞ is calculated by TMT. Then, the speed approximation f’eeg0 and

..............................................

.............................................................................................................

................................................................

..........................
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the acceleration approximation f.eeg0 are determined by equation (2). Thus

f’eeg0 ¼ f’eeg þ oðeÞDt�1;

f.eeg0 ¼ f.eeg þ oðeÞDt�2: ð18Þ

From equation (18), the errors of the speed and the acceleration are greatly enlarged.
Obviously, the numerical stability of this method is improved by using the transfer

vector ff T ..
.
.eeTgT; whereas the numerical stability of this method is degraded by using the

traditional transfer vector ff T ..
.
eTgT:

5. NUMERICAL EXAMPLE

Figure 1 shows a flexible rotor system, which is supported on the squeeze-film damper
bearings without centralizing springs, and Figure 2 shows a dual rotor-bearing system with
intershaft squeeze-film damper. The parameters of the single rotor-bearing system are
given as follows. Bearings: radial clearance C ¼ 0�01703 cm, length L ¼ 0�5281 cm,
diameter D ¼ 8�645 cm, viscosity m ¼ 3�589 
 10�5 N S/cm2; shaft: l ¼ 30�48 cm, diameter
d ¼ 3�8 cm, modulus of elastisity E ¼ 20�09 
 106 N/cm2, density r ¼ 7�85 g/cm3, mass
mB ¼ 1�66 kg; disk: mass mD ¼ 5 kg, friction coefficient CD ¼ 578�87 kg/s, eccentricity
em ¼ 1�703 
 10�3 cm; rotating speed o ¼ 7248 r.p.m. The mass of the shaft is distributed
among the disk according to 17/35, and among the two bearings according to 18/35.

The parameters of the dual rotor-bearing system are given as follows. Intershaft
bearing: radial clearance C ¼ 0�018 cm, length L ¼ 2 cm, diameter D ¼ 6 cm, viscosity
m ¼ 1�764 
 10�6 N S/cm2, mass in low and high shaft MLI ¼ 1000 g, MHI ¼ 1700 g; shaft:
Figure 1. Single rotor-bearing system.

Figure 2. Dual rotor-bearing system.



Table 1

Transient-state value of the disk centre

Time 0�001 0�006 0�011 0�016 0�021

Runge–Kutta method Y=C 0�200993E+0 0�416018E+0 0�782916E+0 0�594079E+0 0�885948E+0
Z=C 0�155228E+0 0�903238E�1 0�232300E+0 �0�120969E+0 0�794727E�1

The suggested method Y=C 0�198315E+0 0�418155E+0 0�782131E+0 0�593329E+0 0�888258E+0
Z=C 0�153159E+0 0�917701E�1 0�233111E+0 �0�121282E+0 0�779377E�1

Time 0�050 0�055 0�060 0�065 0�070

Runge–Kutta method Y=C 0�537536E+0 0�960498E+0 0�635011E+0 0�784468E+0 0�830233E+0
Z=C 0�225652E�1 0�257685E�1 �0�644086E�1 0�102038E+0 �0�942163E�1

The suggested method Y=C 0�537067E+0 0�961277E+0 0�633797E+0 0�785307E+0 0�829629E+0
Z=C 0�225681E�1 0�252522E�1 �0�646941E�1 0�101497E+0 �0�947192E�1
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low-pressure shaft diameter dL ¼ 2 cm, internal and external diameters of high-pressure
shaft dH ¼ 4 cm, DH ¼ 4�8 cm, E ¼ 19�6 
 106 N/cm2, r ¼ 7�8 g/cm3, rotating speed
oL ¼ 3000 r.p.m., oH ¼ 5460 r.p.m.; disk: mass of low- and high-pressure disks
ML ¼ 3293�2 g, MH ¼ 4242�04 g, JPL ¼ 2JdL ¼ 8�065 
 104 g cm2, JPH ¼ 2JdH ¼ 1�9986

 105 g cm2, friction coefficients of low- and high-pressure disks CD ¼ 578�87 kg/s,
eccentricity of high-pressure disk em ¼ 3�6 
 10�3 cm; bearing rigidity KA ¼ KB ¼ KC ¼
17�64 
 1010 g/s2. The mass of shafts is distributed among their both ends.

The suggested method and Runge–Kutta method are used to calculate the transient-
state and steady state unbalance responses of the disk centre in Figure 1. The transient-
state value and steady orbit are shown in Table 1 and Figure 3. The transient solutions by
the two methods are almost equal (the deviations are lower than 0�003), and their steady
state orbit agree very well.

We also use the suggested method and the modal synthetic method to compute the
transient-state responses and steady state orbits of low- and high-pressure shaft centres at
intershaft squeez-film damper in Figure 2. The transient response and the steady state
orbit are shown in Tables 2 and 3 and Figures 4 and 5, where the dotted line represents the
result of the suggested method, and the real line represents the result of modal synthetic
method. Although the deviations of two results in Tables 2 and 3 and Figures 4 and 5 are
visible, the tendencies agree well. The deviations may be caused by the different way in
dispersing shaft segment mass. These results may verify the correctness of the suggested
method.

6. CONCLUSIONS

This paper proposes a new analytical and computational method for the transient
response of non-linear rotor-bearing systems. In the method, Newmark formulation have
two functions: (1) establishing transfer relationship; (2) making numerical integration.
Theoretical analysis and computing results all show: by adopting TMT together with the
transfer vector f f T ..

.
.eeT gT and the Newmark formulation, not only the numerical

stability of TMT can be improved but also the derivation, programming, and computation
are simple and practical. Besides, the computing time and memory space are saved greatly.
So, the method is especially applicable to calculating the transient response of large
complex non-linear rotor-bearing system, and to analyzing its stability.
Figure 3. Orbit of the centre of the disk.



Table 2

Transient-state value of the high-pressure shaft centre

Time 0�5E�5 0�5E�4 0�1E�3 0�6E�3 0�1E�2

Modal synthetic method YH=C 0�167152E+1 0�206289E+1 0�247358E+1 0�380864E+1 0�344486E�1
ZH=C 0�409899E�5 0�195771E�3 �0�299983E�2 0�106717E+0 0�248342E�1

The suggested method YH=C 0�167180E+1 0�195914E+1 0�243108E+1 0�379518E+1 0�442127E+1
ZH=C 0�300014E�5 0�392296E�2 �0�228075E�2 0�111489E+0 0�546137E�1

Time 0�6E�2 0�11E�1 0�16E�1 0�21E�1 0�26E�1

Model synthesis method YH=C 0�727916E+0 �0�150425E+1 �0�277063E+0 0�181736E+1 0�515630E+1
ZH=C 0�432803E+0 �0�514780E+0 �0�123494E+0 0�549709E+0 0�213258E+1

The suggested method YH=C 0�962474E+0 �0�140162E+1 �0�529249E+0 0�108577E+1 0�500341E+1
ZH=C 0�135970E+1 �0�272077E+0 �0�174733E+0 0�592616E+0 0�269895E+1

Table 3

Transient-state value of the low-pressure shaft centre

Time 0�5E�5 0�5E�4 0�1E�3 0�6E�3 0�1E�2

Modal synthetic method YL=C 0�145257E+1 0�211392E+1 0�290302E+1 0�325619E+1 0�335866E+1
ZL=C �0�529475E�5 �0�246486E�3 �0�464756E�3 0�113242E+0 0�728010E�1

The suggested method YL=C 0�144939E+1 0�151115E+1 0�241439E+1 0�391290E+1 0�471991E+1
ZL=C 0�365309E�5 �0�739748E�3 �0�134332E�2 0�116435E+0 0�141196E+0

Time 0�6E�2 0�11E�1 0�16E�1 0�21E�1 0�26E�1

Model synthetic method YL=C 0�716675E+0 �0�130449E+1 �0�331846E+0 0�151092E+1 0�518432E+1
ZL=C 0�424541E+0 �0�551167E+0 �0�123887E+0 0�518579E+0 0�115402E+1

The suggested method YL=C 0�913218E+0 �0�149305E+1 �0�497872E+0 0�110773E+1 0�464771E+1
ZL=C 0�116827E+1 �0�402534E+0 �0�147290E+0 0�337479E+0 0�144163E+1
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Figure 4. Orbits of the centre of low-pressure shaft.

Figure 5. Orbits of the centre of high-pressure shaft.
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APPENDIX: NOMENCLATURE

feg vector of state variables that are complementary to the ff g
ff g vector of state variables that are homogeneous at the left-hand boundary
fJd ; Jpg diameter and polar moment of inertia of a disk
H;L subscript, high-pressure shaft and low-pressure shaft
n; n þ 1 subscript, term at time nDt and ðn þ 1ÞDt
l; r superscript, left and right
T superscript, transpose
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